Addressing the Double Burden of Malnutrition

Bharati Kulkarni National Institute of Nutrition, Hyderabad, India

Rising prevalence of diabetes in India

(V Mohan, Diabetologia 2006; 49: 1175-78)

Undernutrition in Children U-5 in India

Prevalence of Undernutrition & Overweight/Obesity among Indian Adults

Under nutrition (BMI < 18.5)

% Overweight/ obese (BMI > 25)

NFHS-3, 2005-06

NFHS-4, 2015-16

Low birth weight

Diabetes prevalence

APPLIED NUTRITIONAL INVESTIGATION

Non-Obese (Body Mass Index < 25 kg/m²) Asian Indians With Normal Waist Circumference Have High Cardiovascular Risk

Naval K. Vikram, MD, Ravindra Mohan Pandey, MSc, PhD, Anoop Misra, MD, Rekha Sharma, MS, RD, J. Rama Devi, MBBS, and Nidhi Khanna, BSc, MA

From the Department of Medicine, the Department of Dietetics, and the Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India

Cardio-metabolic risk in non-obese adults -high fat phenotype

CS Yajnik¹*, CHD Fall², KJ Coyaji¹, SS Hirve¹, S Rao³, DJP Barker², C Joglekar¹ and S Kellingray²

- Reduced muscle mass, visceral mass
- Preserved subcutaneous & abdominal fat

Original Paper

Nutrition& Metabolism

Ann Nutr Metab 2010;56:182–189 DOI: 10.1159/000276597 Received: May 25, 2009 Accepted after revision: January 11, 2010 Published online: February 25, 2010

Regional Body Composition of Indian Women from a Low-Income Group and Its Association with Anthropometric Indices and Reproductive Events

Bharati Kulkarni Veena Shatrugna Balakrishna Nagalla K. Usha Rani National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India

(N = 278)

Mean age: 40 y; BMI: 22 kg/m²; Body fat %: 33

Table: Sensitivity and specificity of different levels of BMI for identifying subjects with high body fat cutoffs of 30 and 35%, using ROC analysis

BMI cutoff points	Sensitivity	Specificity	Correct classification		
BF% of >30%					
19	94.4%	61.2%	84.9%		
20	85.9%	82.5%	84.9%		
21	76.3%	90.0%	80.2%		
22	61.6%	95.0%	71.2%		
23	46.5%	98.7%	61.5%		
24	35.9%	98.7%	54.0%		
25	26.8%	100%	47.8%		
BF% of >35%					
19	100%	31.8%	61.9%		
20	99.1%	56.4%	73.7%		
21	92.9%	67.3%	77.7%		
22	82.3%	80%	80.9%		
23	69.0%	90.9%	82.0%		
24	57.5%	95.8%	80.2%		
25	46.0%	98.8%	77.3%		

BMI Body Fat Relationship

Childhood Growth & Optimal Body Composition

JCK Wells (2007) Early Human Development

Foetal Undernutrition

Fall CHD Indian Pediatr 2003; 40:480-502

New Delhi Birth Cohort (born 1969-1972)

- Measured every year to age 21 y
- Body comp assessment at age 30 y
- *n* = 1526

(Sachdev et al. Am J Clin Nutr 2005;82:456-66)

BMI & BMI gain in infancy & early childhood **Related to adult LBM BMI & BMI gain in late** childhood **Related to adult fat mass** & central adiposity.

Follow-Up Studies of Nutrition Supplementation Trials INCAP study - Guatemala (1969-77)

- Assessed impact of nutrition supplementation in pregnancy & early childhood on growth & development
- Follow-up study 1988-89 (age 14-20 y)
- Body composition by anthropometry

45 40 * 35 30 25 Atole 20 Fresco 15 10 5 0 Girls Boys * *P* < 0.01

Follow up study of Hyderabad Nutrition trial, 1987-90

To assess the long term impact of early life food supplementation & other environmental risk factors on cardio-metabolic disease risk.

Higher birth weight: I vs C
F1: Adolescence: Intervention group taller by 14 mm
F2: Age: 18-21y
Current diet / PA : more important determinant of LBM

(S Kinra, BMJ 2008; 337: a605; B Kulkarni, Am J of Epidemiol 2014;179:700-9)

Nutritional influences affecting LBM during life course

(Kulkarni B et al. Nutr Rev 2014;72:190–204)

Inter-generational cycle of malnutrition

Intervening at each point in the life cycle will help positive change

Optimizing nutrition during life cycle

>Pre-conception —

>During pregnancy

≻Infancy

≻Early childhood

> Adolescence

≻ Adult

- a. Diet diversification by adding MN rich foods
- b. Fortification of staple foods with MN
- c. Balanced protein energy suppl /multiple MNs
- d. For children & pregnant women:
 Specially formulated fortified food
 supplements : both micro &
 macronutrients (EFAs & protein)
- e. For young children: increasing the energy density of foods

Nutrition education & counseling: limited impact when provided without food suppl

Balanced protein energy supplementation during pregnancy & risk of SGA births

Imdad & Bhutta BMC Public Health 2011, 11(S 3):S17 Kramer, Cochrane Database Syst Rev. 2003

Meta-analysis of the effects of antenatal MMN vs IFA suppl on birth outcomes in 12 RCTs in developing countries

(Christian P. Ann Rev Nutr 2010, 30:83-104)

Birth outcome	Pooled effect size (95% CI)				
Birth weight, g	22.4 (8.3, 36.4)				
Low birth weight (<2500 g)	0.89 (0.81, 0.97)				
Small for gestational age	0.90 (0.82, 0.99)				
Large for gestational age	1.13 (1.00, 1.28)				
Gestational age, days	0.17 (-0.35, 0.70)				
Preterm delivery (<37 weeks)	1.00 (0.93, 1.09)				
Stillbirths	1.01 (0.88, 1.16)				
Perinatal mortality	1.11 (0.93, 1.33)				
Early neonatal mortality	1.23 (0.96, 1.59)				
Late neonatal mortality	0.94 (0.73, 1.23)				

Limited impact of MMN supplementation in pregnancy Estimated reduction in LBW- 11%

MMN Suppl in Pregnancy & Postnatal Growth of Children U5

(*Wei-Ping Luo et al. PLOS One 2014; 9: e88496*) Meta-analysis: 9 trials from different countries

Mean diff in weight over time

Mean diff in height over time

No impact on weight, height & WHZ of children

Mumbai Maternal Nutrition Project

MN-rich food supplement pre-conceptionally & throughout pregnancy ; ~ 6,700 women from Mumbai slums

(Potdar R et al. Am J Clin Nutr 2014; 100: 1257-68)

Ingredients of a snack (samosa): Dry GLV powder Milk powder Fruit powder Fresh GLV Dried fruit Chick peas Sesame seeds

Birth weight effect:

+48 g in women who started suppl \geq 3 mo before pregnancy LBW - 34% vs 41% Impact higher in women with higher BMI at baseline Macro + Micro N supplementation may be needed in undernourished women.

Intergenerational impact of low LBM

European Journal of Clinical Nutrition (2006) 60, 1341–1344 © 2006 Nature Publishing Group All rights reserved 0954-3007/06 \$30.00 www.nature.com/ejcn

SHORT COMMUNICATION

Maternal lean body mass may be the major determinant of birth weight: a study from India

B Kulkarni, V Shatrugna and N Balakrishna

National Institute of Nutrition (Indian Council of Medical Research), Clinical Division, Jamai Osmania, Hyderabad, Andhra Pradesh, India

Maternal body composition assessed by DXA within 1 mo after delivery (N = 76)

Maternal lean mass – strongest correlation with birth weight of the baby.

npg

Dietary intakes of rural women & children in India: low Diet Diversity (NNMB 2012)

	Cereals	Legumes	Green	Other	Roots	Nuts	Fruits	Meat	Milk	Fats
	Millets		leafy	veg	Tubers	Oil		poultry	Milk	Oils
			veg.			seeds			products	
NPNL women (n=9519)	341	28	19	49	70	8	24	21	82	15
Pregnant (n=322)	354	34	18	47	60	7	32	21	79	16
Lactating (n=693)	395	34	19	48	70	6	24	16	66	17
1-3 y children (n=2895)	131	15	7	13	21	2	12	6	86	6

Children (6-23 mo) receiving minimum adequate diet (NFHS 4) Breastfeeding children : 9%

Non-Breastfeeding children: 14%

ASF supplements increase LBM in Kenyan school children

(544 children; median age 7 y, supplemented for 23 months)

Height gain

Grillenberger M et al. J. Nutr. 2003;133:3957S-3964S

Children with low baseline HAZ:

Milk-supplemented children gained 1.3 cm ↑ height than controls (p = 0.05) &
1 cm ↑ height than Meat group

Arm muscle area -

Meat group -

- •80% more \uparrow than controls
- •Milk and Energy groups- 40% more ↑ than control group.

Secular trends in height in different states of India in relation to socioeconomic characteristics and dietary intakes

Raja Sriswan Mamidi, Bharati Kulkarni, and Abhishek Singh Food Nutr Bull. 2011 ;32:23-34

Positive relation between milk intakes & height of adults (NFHS 3)

FIG. 3. Scatter diagram showing the percentage of men 20 to 49 years of age in different states consuming milk or curd at least once a week in relation to mean height (r = 0.69)

FIG. 4. Scatter diagram showing the percentage of women 20 to 49 years of age in different states consuming milk or curd at least once a week in relation to mean height (r = 0.63)

Milk consumption \geq once/week *vs* < once/week: difference in height +0.65 cm (men) & 0.40 cm (women) (both p<0.001); adjusted for confounders Intake of other ASFs not associated with height

Cultural importance of milk in India goes beyond nutritive value

SUMMARY

- Double burden of childhood undernutrition & adult-onset adiposity in transitioning societies: public health challenge.
- Sub-optimal LBM- link between these 2 forms of malnutrition
- Positive association of early nutritional status with LBM in later life.
- Nutritional influences throughout the life course impact LBM
- Improving intake of diverse foods especially milk & animal source foods is necessary for optimal body composition
- Interventions focusing on child nutrition should aim at increase in LBM to address the double burden of malnutrition

THANK YOU